BMBF Verbund SIMUROM (05M2013)Simulation und robuste Optimierung von elektromechanischen Energiewandlern unter Berücksichtigung von Unsicherheiten

Überblick

SIMUROM ist ein Verbundprojekt, gefördert durch das Bundesministerium für Bildung und Forschung (BMBF) im Programm zur Förderung von Forschung auf dem Gebiet „Mathematik für Innovationen in Industrie und Dienstleistungen“ (Projektträger: DESY, Hamburg).

Ergebnis der Simulation des magnetischen Feldes in einer permanentmagneterregten Maschine

Ergebnis der Simulation des magnetischen Feldes in einer permanentmagneterregten Maschine (Simulation: NIOBE)

Der Forschungsverbund untersucht Fragen, die sich an den Bedarfsfeldern der Hightech-Strategie 2020 der Bundesregierung orientieren: Mobilität, Klima und Energie. Effizientes Design von elektrischen oder elektromechanischen Energiewandlern, wie zum Beispiel Motoren, Generatoren und Wirbelstrombremsen, muss viele Komponenten berücksichtigen. Bei Berechnungen müssen Systeme mit Millionen von Unbekannten gelöst werden. Multiphysikalische Effekte wie Wirbelströme, Anregungen elektrischer Netzwerke, Rotorbewegungen oder Wärmeentwicklung müssen die Entwickler ebenfalls einbeziehen, so dass hoch aufgelöste Simulationen von komplizierten Geräten derzeit oft eine Woche oder länger dauern. Und trotz möglichst hoher Genauigkeit sind Simulationsergebnisse oft nur grobe Näherungen an die Wirklichkeit. Um zu vermeiden, dass kleine Abweichungen vom Referenzentwurf, beispielsweise in der Fertigung, zu unerwarteter Minderleistung oder Ausfällen führen, ist heute eine auf Erfahrungswissen beruhende Überdimensionierung erforderlich.

Hier setzt SIMUROM an. Ziel des Vorhabens ist es, durch Grundlagenforschung Methoden zu entwickeln, die es in Zukunft erlauben, elektrische Motoren, wie sie zum Beispiel im Bosch eBike eingesetzt werden, direkt am Computer „robust“ zu optimieren (Thema „Optimierung“, Prof. Dr. Stefan Ulbrich, TU Darmstadt). Auf Grund der hochdimensionalen Problemstellungen müssen hier Modellordnungsreduktions- und -adaptationsverfahren eingesetzt werden (Thema „Modellreduktion“, Prof. Dr. Michael Hinze, Universität Hamburg). Mit dem neuen mathematischen Verfahren des Computational Engineering sollen Hersteller zukünftig noch näher an die Grenzen des physikalisch Machbaren gehen können, ohne Einbußen im Betrieb befürchten zu müssen. Multiphysikalische Effekte wie Erhitzung werden noch realistischer im Design berücksichtigt (Thema „Kopplung“, Dr. Andreas Bartel, Universität Wuppertal); das Risiko von Alterungsprozessen wird durch stochastische Verfahren abgeschätzt und somit die Zuverlässigkeit erhöht (Thema „Unsicherheiten“, Prof. Dr. Sebastian Schöps, TU Darmstadt).

Kooperationspartner ist Prof. Dr-Ing. Herbert De Gersem (Wave Propagation und Signal Processing) von der KU Leuven, Belgien. Praxispartner sind die Robert Bosch GmbH, Stuttgart, und der Darmstädter Softwarehersteller CST – Computer Simulation Technology AG.